我司主要产品柔性基材镀膜,屏蔽材料,吸波材料,贵金属浆料等产品!

先进院(深圳)科技有限公司
当前位置:首页 >资讯中心 >技术资料 >半导体芯片电子封装胶粘剂(胶水,粘接剂)胶接工艺及胶粘技术
联系我们

定制热线:0755-22277778 电话:0755-22277778 
手机:13826586185(段先生)
传真:0755-22277776
邮箱:duanlian@xianjinyuan.cn

技术资料

半导体芯片电子封装胶粘剂(胶水,粘接剂)胶接工艺及胶粘技术

时间:2022-10-11浏览次数:6298

引言:胶接是通过具有黏附能力的物质,把同种或不同种材料牢固地连接在起的方法。具有黏附能力的物质称为胶粘剂或黏合剂,被胶接的物体称为被粘物,胶粘剂和被黏物构成的组件称为胶接接头。其主要优点是操作简单、生产率高;工艺灵活、快速、简便;接头可靠、牢固、美观产品结构和加工工艺简单;省材、省力、成本低、变形小。容易实现修旧利废接技术可以有效地应用于不同种类的金属或非金属之间的联接等。

 胶水的固化方式,一般有以下几种:1、常温固化;2、加热固化;3、UV固化;4、复合型固化。

先进院(深圳)科技有限公司底部填充技术

一 底部填充技术の简介

底部填充技术上世纪七十年代发源于IBM公司,已经成为电子制造产业重要的组成部分。起初该技术的应用范围只限于陶瓷基板,直到工业界从陶瓷基板过渡到有机(叠层)基板,底部填充技术才得到大规模应用,并且将有机底部填充材料的使用作为工业标准确定下来。

 随着电子产品的发展趋向微型化、薄型化、高性能化,IC封装也趋于微型化、高度集成化方向发展。通过采用底部填充可以分散芯片表面承受的应力进而提高整个产品的可靠性,因而底部填充成为提高电子产品可靠性的必要工艺。底部填充工艺(underfill)是将环氧树脂胶水点涂在倒装晶片边缘,通过“毛细管效应”,胶水被吸往元器件的对侧,完成底部充填过程,然后通过加热使胶水固化。底部填充可以解决精密电子元件的诸多问题,比如对于CSP、BGA、POP等工艺,底部填充能极大提高其抗冲击能力;对FLIP CHIP而言,因其热膨胀系数(CTE)不一致产生热应力极易导致焊球失效,底部填充能有效提高抵抗热应力的能力。Under Fill点胶工艺广泛应用于消费类电子行业,如手机、穿戴、TWS、汽车电子等相关联PCB或FPC。
导电银浆

二 底部填充技术の主要工艺流程

原理:底部填充胶的应用原理是利用毛细作用使得胶水迅速流过BGA 芯片底部芯片底部,其毛细流动的最小空间是10um。这也符合了焊接工艺中焊盘和焊锡球之间的更低电气特性要求,因为胶水是不会流过低于4um的间隙,所以保障了焊接工艺的电气安全特性。

(1)毛细管底部填充从器件 边缘注入。

   使用的底部填充系统可分为三类:毛细管底部填充、助焊(非流动)型底部填充和四角或角-点底部填充系统。每类底部填充系统都有其优势和局限,但使用最为广泛的是毛细管底部填充材料。毛细管底部填充的应用范围包括板上倒装芯片(FCOB)和封装内倒装芯片(FCiP)。通过采用底部填充可以分散芯片表面承受的应力进而提高了整个产品的可靠性。

在传统倒装芯片和芯片尺寸封装(CSP)中使用毛细管底部填充的工艺类似。首先将芯片粘贴到基板上已沉积焊膏的位置,之后进行再流,这样就形成了合金互连。在芯片完成倒装之后,采用分散技术将底部填充材料注入到CSP的一条或两条边。材料在封装下面流动并填充CSP和组装电路板之间的空隙。尽管采用毛细管底部填充可以极大地提高可靠性,但完成这一工艺过程需要底部填充材料的注入设备、足够的厂房空间安装设备以及可以完成准确操作的工人。由于这些投资要求以及缩短生产时间的压力,后来开发出了助焊(非流动)型底部填充技术。
金浆

(2)非流动型底部填充工艺流程 及优点。

相对于其他底部填充系统来说,非流动型底部填充的更大优点在于对工艺的改进,在材料性能方面并没有明显差异。为了让底部填充的填充过程与传统的表面组装工艺更好的兼容,非流动型底部填充不能使用控温准确度很高的固化炉。通过将助焊性能集成到底部填充材料中,CSP的粘片和材料固化工艺合二为一。在组装过程中,在元件放置之前先将非流动型底部填充材料涂覆到粘片位置上。当线路板进行再流时,底部填充材料可以作为助焊剂,协助获得合金互连,并且本身在再流炉中同步完成固化。所以可以在传统的表面组装工艺线上完成底部填充。从设备和人员投入的角度来讲,非流动型底部填充系统节约了成本和时间,但自身也受到一些限制。与毛细管底部填充不同,非流动型底部填充材料中必须含有填充物。在底部填充材料中的填充材料可能正好位于焊料球和电路板焊盘之间。从设计上考虑,为了改善再流过程中焊料键合,要求该系统内不能含有微粒。如果没有微粒,底部填充材料的热膨胀系数(CTE)比较高,经过温度循环后其性能就不如毛细管底部填充稳定。另外,如果采用传统的再流工艺,而不进行准确温度控制也会降低再流工艺的成品率。此外电路板上吸附的湿气再流时也会被释放出来形成孔洞。但新的改进工艺已经克服了上述缺点。

(3)预成型底部填充应用的工 艺流程。

对于带 中间插入层或边角阵列的CSP来说,采用毛细管底部填充或非流动型底部填充系统都不如角-点底部填充方法更合适。这种方法首先将底部填充材料涂覆到CSP对应的焊盘位置。与非流动型底部填充不同,角-点技术与现有的组装设备和常规的焊料再流条件兼容。由于这类底部填充是可以返修的,制造商们也避免了因为一个器件缺陷就废弃整个电路板的风险。技术的转换需要提高可靠性 由于器件及其引脚节距变得更小、功能要求更多,并且需要产品工艺实现无铅化,因此在下一代电子产品中,底部填充技术的应用变得越来越重要。底部填充可以提高CSP中无铅焊料连接的可靠性,与传统的锡-铅焊料相比,无铅互连更容易产生CTE失配造成的失效。由于无铅工艺的再流温度较高,封装基板的翘曲变得更为强烈,而无铅焊料本身延展性又较低,因此该种互连的失效率较高。向无铅制造转换的趋势和无铅焊料本身的脆性等综合作用,使得在器件中使用底部填充技术已经成为成本更低,选择最为灵活的解决方案。

 随着产业链向引脚节距0.3mm的CSP、节距小于180祄的倒装芯片封装以及更小尺寸发展,采用底部填充材料几乎是唯一可以保证全线成品率的方法。即将出现的可能 除了满足不断变化的机械要求,保证高可靠性之外,电子产品制造商还必须让产品的成本更具竞争力。面对这样的挑战,尚处于研发阶段的新底部填充技术,尽管仍处于一个产品的婴儿期,已经显示出很好的前景。非流动型底部填充的优势在于工艺效率较高,并且减少了设备和人员成本。但在使用底部填充材料时遇到的技术难题使这些优势都变得不重要了。不过市场上出现了含有50%填充成分的非流动型底部填充材料。采用了该比例填充料之后,在保持非流动型底部填充工艺流程的同时,改善了产品的温度循环性能。另一个备受关注的创新是预成型底部填充技术,该项技术有望在后道封装中完全消除底部填充工艺,而在CSP进行板级组装之前涂覆底部填充材料,或者在晶圆级工艺中涂覆底部填充材料。预成型底部填充在概念上很好,但要实施到当前的产品中,在工艺流程上还有一些挑战需要面对。在晶圆级底部填充材料的涂覆中,可以在凸点工艺之前或之后涂覆预成型底部填充材料,但两种方法都需要非常准确的控制。如果在凸点工艺之前涂覆,必须考虑工艺兼容问题。与之相反,如果在凸点工艺之后涂覆,则要求预成型底部填充材料不会覆盖或者损坏已完成的凸点。此外还需考虑到晶圆分割过程中底部填充材料的完整性以及一段时间之后产品的稳定性,这些在正式使用底部填充材料到产品之前都需要加以衡量。尽管某些材料供应商对预成型底部填充材料的研发非常超前,但将这一产品投入大规模应用还有更多的工作要完成。铂浆

 (4)预成型底部填充应用 的工艺流程。

结论 如果没有底部填充材料的使用,当今的窄节距器件就无法克服可靠性问题。此外为了降低无铅焊料连接位置由CTE失配引起的失效率,无铅制造的工艺流程和温度要求都要求使用底部填充材料。新工艺流程的要求、器件功能的不断增多和封装尺寸的减小,这些要素都要求越来越多地使用牢固的底部填充系统。尽管已有很多种不同类别的底部填充技术,为了满足电子产品多功能、低成本的要求,还需要开发出下一代低成本、工艺流程简单的底部填充技术。

三 底部填充技术の作用

 随着手机、电脑等便携式电子产品,日趋薄型化、小型化、高性能化,IC封装也日趋小型化、高聚集化,CSP/BGA得到快速普及和应用,CSP/BGA的封装工艺操作要求也越来越高。底部填充胶的作用也越来越被看重。BGA和CSP,是通过微细的锡球被固定在线路板上,如果受到冲击、弯折等外部作用力的影响,焊接部位容易发生断裂。而底部填充胶特点是:疾速活动,疾速固化,能够迅速浸透到BGA和CSP底部,具有优良的填充性能,固化之后可以起到缓和温度冲击及吸收内部应力,补强BGA与基板连接的作用,进而大大增强了连接的可信赖性。举个例子,我们日常使用的手机,从2米高地方落地,开机仍然可以正常运作,对手机性能基本没有影响,只是外壳刮花了点。很神奇对不对?这就是因为应用了BGA底部填充胶,将BGA/CSP进行填充,让其更牢固的粘接在PBC板上。

使用UNDERFILL底部填充胶水の注意事项

 (1)流动性:流动性或者说填充速度往往是客户非常关注的一个指标,尤其是作为实际使用的SMT厂家,而实际对于可靠性要求非常高的一些行业,这个倒是其次的。就目前SMT行业的普遍要求,一般在1~30分钟理论上都是可接受的(当然手机行业一般是在2-10分钟以内,有些甚至要求以秒计,这个也需要结合芯片的大小)。测试方法:最简单的方法当然是直接在芯片上点胶进行测试,而且评估不同胶水的流动性时更好是同时进行平行测试(更好样板数要5-10个以上)。在研发段对流动性的测试就是用两块玻璃片间胶水的流动速度来判断研发方向的。影响流动性的因素有很多,在平行的测试条件下,下面有些可以检讨的因素:主要因素:1)粘度:毋庸置疑粘度肯定是影响流动速度最关键的因素之一,目前像粘度在几百cps的胶水基本上都是可以不需要预热点胶的,填充速度基本上都是一两分钟以内的;而像粘度稍大一些的达到几千cps的胶差别就比较大了(从几分钟到十几分钟不等);2)预热温度:这也是一个非常关键的影响因素,尤其是对一些粘度在一千以上的胶水,一般在预热(预热温度就需要结合各家的产品的特性,一般可以胶水的粘温曲线做参考,当并非一一直接对应的关系)的情况下,粘度为几千的胶水能降到几百,流动性会显著增大,但要注意预热温度过高过低都可能会导致流动性变差;3)基板的差别(芯片的尺寸及锡球的分布、锡球球径及数量、锡球间距、助焊剂残留、干燥程度等),这个对填充速度也是有一定影响的,在某些情况下影响也是非常明显的。当然这些差别对另一个底填胶的指标影响更大,后面会细说。当然如果是几种胶水平行测试,这个因素的影响是一致的。次要因素:1)施胶量(点胶方式);2)基板角度(有些厂家会将点胶后的基板倾斜一定角度加快流动性);3)环境温度(不预热的情况下)。说明:以上的一些因素的主次也都是相对而言的,如果客户能接受预热的方式的话,同时客户对流动性的要求不会准确到秒的话,那么上述因素的影响都会变小了。不预热的情况下要求快速填充的话,除了把胶的常温粘度做小外貌似没有更好的办法。另外同样是预热的条件下,流动速度就和胶水体系自身的设计思路有很大的关系了。同样一款2000cps左右粘度的胶水,预热的情况下流动速度也可以差几倍时间的。最后对于预热这个环节每家的说法都不一样,很多客户不愿意预热其实也是为了点胶操作的便利性,然而站在理论分析的角度,基板预热可以起到烘烤芯片的作用,而且也可以减少填充时产生空洞(气泡)的概率,当然加快填充速度也是必然的。
导电胶

(2)、固化温度和时间(固化度):这个指标其实在研发端是比较容易判断的,用DSC曲线就很容易判断出来,当然由于DSC在测试时胶量是以mg来测试,所以一般建议给客户的固化温度是在DSC的理论时间上乘以4倍的(韩国元化学的建议)。然而在客户端如果判断,其实简单的方法就是按胶商TDS上建议的固化温度和时间还是比较保险的。另外有些客户经常会问如果不完全按TDS建议会如何,简单的推断的方法同等温度下时间加长或者同等时间下温度升高,理论上都是会完全固化的,但反向推断的话更好找供应商确认下。因为每种胶特性不一样,低于某个温度时间即使加几倍时间也未必能固化,同理也不是温度越高时间就会越短,就目前接触到的底填胶水的固化温度没有建议高过150度的(SONY曾经有款手机,使用SUNSTAR的胶水,在150度快速固化时后期测试时会有些缺陷,同样改用130度加长时间固化后就没有这个问题了)。太高温固化和太快速固化对胶水的后期一些性能还是有着蛮大的影响的(有些体系的胶水会影响更明显)。另外对于固化程度的判断,这个做为使用者的客户可能不大好判断,因为目测的完全固化时间和理论上的完全固化还是有差别的,客户一般容易从固化后的硬度,颜色等判断,但这个些指标可能在胶水只固化了80%以上时已经没法分辨出来了,如果能增加一些粘接力等测试辅助可能会更准确些,当然更准确的方法还是要用会DSC等一些热力学测试的设备和方法了。而在实际应用中,胶水达到90%或95%以上的固化已经算是完全固化了,具体要达到百分之九十几这个就要看后期可靠性的要求了。未完全固化的胶水是很难真正全面发挥应有作用的,尤其是后期测试要求很严格的时候。所以建议客户更好使用相对保险的固化条件,如果设置在临界值的话,固化温度或固化时间少有偏差就可能导致固化不完全。

服务热线
0755-22277778
13826586185(段先生)
duanlian@xianjinyuan.cn
扫码添加微信咨询
wechat qrcode